
Course: Time Series Analysis and Forecasting Semester(s): 2008 (updated 2013)
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1.1 Autocovariance and autocorrelation functions

� Autocoriance function (ACF): γ(k) = E[(xt − µ)(xt+k − µ)]

� Autocorrelation function: ρ(k) = γ(k)
γ(0)

� If µ = E[xt] = 0 then γ(k) = E[xtxt+k]

In practice γ(k) is not known and is estimated from the data.

� {x1, x2, . . . , xN} be a realization of the process xt of length N

� x̄ = N−1
∑N
t=1 xt

� γ̂(k) = 1
N

∑N
t=k+1(xt − x̄)(xt−k − x̄) for k = 0, 1, . . . , N − 1.

� ρ̂(k) = γ̂(k)
γ̂(0) , k = 0, 1, . . . , N − 1.

1.1.1 Example 1: US Accidental death data

Figure 1.1 shows monthly US accidental death numbers. This data set is readily available in R and has been
used in numerous books and articles. We would like to examine autocovariance property of this time series.

Figure 1.4 shows autocorrelation function (ρ̂k, k = 0, 1, . . . , 24) of US accidental death data. A 95% confidence
interval (CI) is also added to the plot. Not all autocorrelation are lying within the CI and are not close to
zero. This indicates the data is not random, rather depicts a high degree of autocorrelation between adjacent
and near adjacent observations. Also, spikes of autocorrelation functions appear to be in cyclical fashion
with an indication of existence of strong seasonal pattern in the data.

1Prepared by Atikur R. Khan (atikrkhan@gmail.com).
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Figure 1.1: Monthly USA accidental death data
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R code to produce Figure 1.1:

plot.ts(USAccDeaths,xlab="",ylab="",main="")

mtext("Number of deaths",side=2, cex=0.9, line=+1.75)

mtext("Months", side=1, cex=0.9, line=+1.6)

R code to produce Figure 1.2:

acf(USAccDeaths, lag.max=24, type="correlation", ci=0.95, xlab="k",

ylab="", main="", axes=FALSE)

axis(1, at=c(0.0, 0.5, 1.0, 1.5, 2.0), label=c(0,6,12,18,24) )

axis(2)

box()

mtext(bquote( hat(rho[k]) ),side=2,cex=1.1,line=+1.75)

mtext("k", side=1, cex=1, line=+1.6)

1.1.2 Example 2: Nottingham castle temperature data

This data set comprises monthly temperature data (in degrees Fahrenheit) of 20 years from January 1920
to December 1939. There is a clear seasonal pattern in the data (Figure 1.3) and we would expect auto-
correlation function to show some spikes appear to be in cyclical patterns. Figure 1.4 shows that many
autocorrelation functions are outside the 95% CI and there is a very strong autocorrelation in the data.

1.2 Covariance stationary process

A time series {xt} is covariance stationary if the mean and covariance function does not depend on time t
so that

E(xt) =µ for all t

Cov(xt, xt−k) =E [(xt − µ)(xt−k − µ)] = γ(k) for all t and any k
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Figure 1.2: Sample autocorrelation function of monthly USA accidental death data

Figure 1.3: Monthly Nottingham castle temperature

1.2.1 Wold’s representation

Wold’s representation theorem, namely, that if xt is a linearly regular, covariance-stationary process then xt
can be expressed as

xt = µ+

∞∑
j=0

κ(j)εt−j , (1.1)
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Figure 1.4: Sample autocorrelation function of monthly Nottingham castle temperature data

where εt is a zero mean white noise (innovation) process with variance σ2. The coefficients of the transfer
function k(z) =

∑
j≥0 κ(j)zj satisfy the conditions κ(0) = 1 and

∑
j≥0 κ(j)2 <∞. If 0 <

∑
j≥0 |κ(j)| <∞

then xt is said to be a short memory processes, whereas if
∑
j≥0 |κ(j)| = ∞ then xt is said to exhibit long

memory, see Beran (1994) or Palma (2007). This division of linearly regular processes into short and long
memory series according to the speed of decay of their impulse response coefficients proves to be of crucial
importance in our subsequent analysis.

Definition 1.1. A stationary process xt is linearly regular (nonsingular) if and only if X−∞ =
⋂∞
s=0 X

t−s
−∞ =

0 and linearly singular (deterministic) if and only if X−∞ = X =
⋃∞
s=−∞ X

t−s
−∞.

From the argument presented in Ibragimov & Linnik (1971, Section 17.1) we can deduce the following result.

Theorem 1.1. A necessary and sufficient condition for xt to be a linearly regular, stationary process is that,
for all ζ ∈ X with E[ζ2] <∞,

lim
t→−∞

supξ|E[ξζ]− E[ξ]E[ζ]| = 0 ,

where the supremum is taken over all ξ ∈ X t−∞ with E[ξ2] <∞.

Theorem 1.1 conveys the idea that for a linearly regular process events become uncorrelated (orthogonal) with
increasing separation, and if we suppose that xt for t ∈ Z is a linearly regular, covariance-stationary process,
with mean E[xt] = µ and autocovariance function E[(xt − µ)(xt+h − µ)] = γ(h), an obvious implication of
the theorem is that |γ(k)| → 0 as k →∞.

1.2.2 Example 1: White noise process

If xt = εt where εt ∼WN(0, σ2), then we get

E(xt) =E(εt) = 0

V ar(xt) =V ar(εt) = σ2

Cov(xt, xt−k) =V ar(εt, εt−k) = 0
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1.2.3 Example 2: Sinusoidal signal

Dealing with sinusoidal signal is very common in time series analysis especially in engineering and physics.
Here we consider an example from Khan and Poskitt (2010) where cosine series is generated by using the
formula

xt =µ+

p∑
r=1

Arcos(λrt+ θr)

yt =xt + εt

where µ is the mean signal, Ar is the amplitude, λr is the frequency (number of cycles per unit measured
in radians), θr is the phase uniformly distributed over the range (−π, π) and εt is the i.i.d. Gaussian noise
process with noise variance σ2. The wavelength of the process is 2π/λr.

Since amplitude Ar and the frequency λr are constant at time t, we may write

E(xt) = µ+

p∑
r=1

ArE [cos(λrt+ θr)] = µ+

p∑
r=1

Ar

∫ π

−π

cos(λrt+ θr)

2π
dθr = µ

Similarly, we can show that

E(xtxt+h) =

{
µ2 + 1

2

∑p
r=1A

2
rcos(λrh) if h 6= 0;

µ2 + 1
2

∑p
r=1A

2
r if h = 0.

and

E(ytyt+h) =

{
µ2 + 1

2

∑p
r=1A

2
rcos(λrh) if h 6= 0;

µ2 + 1
2

∑p
r=1A

2
r + σ2 if h = 0.

Thus the process is covariance stationary and the signal-to-noise ratio of this process can be written as

SNR = 10 log10

(
µ2 + 1

2

∑p
r=1A

2
r

σ2

)
dB.

1.3 Properties of sample autocorrelation function

Let x1, x2, . . . , xN be a sample from the time series {xt : t ∈ T} with finite mean µ and variance σ2
x then the

hth sample autocorrelation function is

γ̂(h) =

{
N−1

∑N−|h|
t=1 (xt − x̄)(xt+|h| − x̄) if µ 6= 0;

N−1
∑N−|h|
t=1 xtxt+|h| if µ = 0.

1.3.1 Asymptotic mean and variance

Lemma 1.1. If {xt} be a time series with mean µ = Ext <∞ and variance σ2
x = var(xt) <∞ then

Eγ̂(h) =


(

1− |h|N
)
γ(h) if µ = 0;(

1− |h|N
)

[γ(h)−N−1γ(0)
∑N−1
r=−(N−1)(1− |r|/N)ρ(r)] if µ 6= 0.

where µ̂ = N−1
∑N
t=1 xt and f(0) is the spectral density at frequency zero.
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Proof of Lemma 1.1: When µ = 0:

Eγ̂(h) = N−1
N−|h|∑
t=1

Extxt+|h|

= N−1(N − |h|)γ(h)

=

(
1− |h|

N

)
γ(h)

.

When µ 6= 0:

Eγ̂(h) = N−1
N−|h|∑
t=1

E(xt − x̄)(xt+|h| − x̄)

= N−1
N−|h|∑
t=1

E
[
(xt − µ)(xt+|h| − µ)− (x̄− µ)2

]
= N−1

N−|h|∑
t=1

[γ(h)− var(x̄)]

.

Now var(x̄) ∼ 2πγ(0)
N f(0) yields Eγ̂(h) ∼

(
1− |h|N

) [
γ(h)− 2πγ(0)

N f(0)
]
, which completes the proof.

Lemma 1.2. If {xt} is a zero mean stationary process and is stationary up to order four then

(i) Eγ̂(h) =
(
1− h

N

)
γ(h) for h ≥ 0

(ii) cov [γ̂(p), γ̂(q)] = 1
N

∑N−q−1
r=−(N−p)+1

[
1− η(r)+q

N

]
{γ(r)γ(r + q − p) + γ(r + q)γ(r − p) + κ4(r, p, q − p)}

where κ4(s− t, p, q − p) is the fourth joint cumulant of the distribution of {xt, xt+p, xs, xs+q} and

η(r) =

 r when r > 0;
0 when −(q − p) ≤ r ≤ 0;
−r − (q − p) when −(N − p) + 1 ≤ r < −(q − p).

(iii) For large N , Ncov [γ̂(p), γ̂(q)] ∼
∑∞
r=−∞{γ(r)γ(r + q − p) + γ(r + q)γ(r − p) + κ4(r, p, q − p)}

Proof of Lemma 1.2: First part of the lemma is drawn from lemma 1.1. For the second part, we use the
usual definition of covariance by considering the case p, q ≥ 0,

cov [γ̂(p), γ̂(q)] = E [γ̂(p)γ̂(q)]− E [γ̂(p)]E [γ̂(q)]

=
1

N2

N−p∑
t=1

N−q∑
s=1

E(xtxt+pxsxs+q)−
(

1− p

N

)(
1− q

N

)
γ(p)γ(q)

where

E(xtxt+pxsxs+q) = E[xtxt+p]E[xsxs+q] + E[xtxs]E[xt+pxs+q] + E[xtxs+q]E[xsxt+p] + κ4

= γ(p)γ(q) + γ(s− t)γ(s+ q − t− p) + γ(s+ q − t)γ(s− t− p) + κ4
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and κ4 = κ4(s− t, p, q− p) is the fourth joint cumulant of the joint distribution of {xt, xt+p, xs, xs+q}, which
yields

cov [γ̂(p), γ̂(q)] =
1

N2

N−p∑
t=1

N−q∑
s=1

{γ(s− t)γ(s+ q − t− p) + γ(s+ q − t)γ(s− t− p) + κ4(s− t, p, q − p)}

The sum over s, t depends only on their difference in the form of s − t. Letting s − t = r and changing
variable from s and t to r = s − t and t we can break the double some and can write (Priestley 1981, sec.,
5.3.3) in the form as in lemma 1.2.

Since η(r)+q
N

N−→ 0, for large N , Ncov [γ̂(p), γ̂(q)] ∼
∑∞
r=−∞{γ(r)γ(r+q−p)+γ(r+q)γ(r−p)+κ4(r, p, q−p)}.

Lemma 1.3. If {xt} is a zero mean stationary process and is stationary up to order four then

(i) Eρ̂(h) ≈
(

1− |h|N
)
ρ(h)

(ii) cov [ρ̂(p), ρ̂(q)] ≈ 1
γ(0)2 {cov[γ̂(p), γ̂(q)]− ρ(p)cov[γ̂(0), γ̂(p)]− ρ(p)cov[γ̂(0), γ̂(q)] + ρ(p)ρ(q)var[γ̂(0)]}

(iii) For large N

Ncov [ρ̂(p), ρ̂(q)]
N−→

∞∑
r=−∞

{ρ(r)ρ(r + q − p) + ρ(r + q)ρ(r − p)− 2ρ(p)ρ(r)ρ(r − q)− 2ρ(q)ρ(r)ρ(r − p)

+ 2ρ(p)ρ(q)ρ(r)2}+

∞∑
r=−∞

{κ4(r, p, q − p) + κ4(r, p,−p) + κ4(r, q,−q) + κ4(r, 0, 0)}

where cov [γ̂(p), γ̂(q)] as defined in lemma 1.2.

Proof of Lemma 1.3: Let us define δ{γ̂(h)} = γ̂(h) − Eγ̂(h) and δ{γ̂(h + k)} = γ̂(h + k) − Eγ̂(h + k).
Assuming δ{γ̂(h)} and δ{γ̂(h+ k)} very small (Priestley 1981, eq. 5.3.34) an approximation yields

E[ρ̂(h)] ≈ E[γ̂(h)]

E[γ̂(0)]
=

(
1− |h|

N

)
ρ(h)

We may write that

δ{ρ̂(p)} =
δ{γ̂(p)}
δ{γ̂(0)}

≈ γ̂(0)δ{γ̂(p)} − γ̂(p)δ{γ̂(0)}
γ̂(0)2

∼ δ{γ̂(p)}
γ(0)

− γ(p)δ{γ̂(0)}
γ(0)2

and

cov[ρ̂(p), ρ̂(q)] = E[δ{ρ̂(p)}δ{ρ̂(q)}].

Thus we may deduce that

cov[ρ̂(p), ρ̂(q)] ≈ 1

γ(0)2
{cov[γ̂(p), γ̂(q)]− ρ(p)cov[γ̂(q), γ̂(0)]− ρ(q)cov[γ̂(p), γ̂(0)]

+ ρ(p)ρ(q)var[γ̂(0)]}
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where we may define each term separately and rewrite the above equation as

Ncov[γ̂(p), γ̂(q)]

γ(0)2
=

N−q−1∑
r=−(N−p)+1

(
1− η(r) + q

N

)
{ρ(r)ρ(r + q − p) + ρ(r + q)ρ(r − p)

+ κ4(r, p, q − p)}

N−→
∞∑

r=−∞
{ρ(r)ρ(r + q − p) + ρ(r + q)ρ(r − p) + κ4(r, p, q − p)}

It is now straightforward to show that

Ncov[γ̂(0), γ̂(p)]

γ(0)2
N−→

∞∑
r=−∞

{2ρ(r)ρ(r − p) + κ4(r, p,−p)}

Ncov[γ̂(0), γ̂(p)]

γ(0)2
N−→

∞∑
r=−∞

{2ρ(r)ρ(r − q) + κ4(r, q,−q)}

Nvar[γ̂(0)]

γ(0)2
N−→

∞∑
r=−∞

{2ρ(r)2 + κ4(r, 0, 0)}

By adding the all four terms, we get the last part of lemma 1.3.

1.3.2 Asymptotic distribution

Theorem 1.2. If {xt} is a zero mean stationary process and is stationary up to order four then for any
positive integer k,

N1/2

[
γ̂(0)− γ(0), γ̂(1)− N − 1

N
γ(1), . . . , γ̂(k)− N − k

N
γ(k)

]
D−→ N(0,WN )

where WN = [Wp,q]p,q=1,...,k+1 and Wp+1,q+1 = Ncov [γ̂(p), γ̂(q)].

For large sample, the bias of the sample autocorrelation function becomes zero and the limiting distribution
is

N1/2 [γ̂(0)− γ(0), γ̂(1)− γ(1), . . . , γ̂(k)− γ(k)]
N−→ N(0,W)

where

W = [wp,q]p,q=1,...,k

and

wp+1,q+1 = lim
N→∞

Ncov [γ̂(p), γ̂(q)]

=

∞∑
r=−∞

{γ(r)γ(r + q − p) + γ(r + q)γ(r − p) + κ4(s, p, q − p)}.

Proof of Theorem 1.2: Let γ = [γ(0), γ(1), . . . , γ(k)]
′

be a vector of first k autocovariances. By lemma
1.2, we may note that
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E (γ̂) =

[
γ(0),

N − 1

N
γ(1), . . . ,

N − k
N

γ(k)

]′
N−1WN = E[{γ̂ − Eγ̂}{γ̂ − Eγ̂}′]

where

Wp+1,q+1 = NE[{γ̂(p)− Eγ̂(p)}{γ̂(q)− Eγ̂(q)}′]
= Ncov [γ̂(p), γ̂(q)]

By using CLT we may write

N1/2[γ̂ − Eγ̂] = N1/2

[
γ̂(0)− γ(0), γ̂(1)− N − 1

N
γ(1), . . . , γ̂(k)− N − k

N
γ(k)

]
∼ N(0,W).

For very large N , E (γ̂ − γ)
N−→ 0 and the above equation yields

N1/2 [γ̂(0)− γ(0), γ̂(1)− γ(1), . . . , γ̂(k)− γ(k)]
N−→ N(0,W)

the asymptotic distribution of first k autocovariances.

Theorem 1.3. If {xt} is a zero mean stationary process and is stationary up to order four then for any
positive integer k,

N1/2

[
ρ̂(1)− N − 1

N
ρ(1), ρ̂(2)− N − 2

N
ρ(2), . . . , ρ̂(k)− N − k

N
ρ(k)

]
D−→ N(0,GN )

where GN = [Gp,q]p,q=1,...,k+1 and Gp,q = Ncov [ρ̂(p), ρ̂(q)].

For large sample, the bias of the sample autocorrelation function becomes zero and the limiting distribution
is

N1/2 [ρ̂(1)− ρ(1), . . . , ρ̂(k)− ρ(k)]
N−→ N(0,G)

where G = [gp,q]p,q=1,...,k and gp,q = limN→∞Ncov [ρ̂(p), ρ̂(q)] defined in lemma 1.3.

Theorem 1.4. If {xt} be a general linear process of the form

xt = µ+

∞∑
j=−∞

αjεt−j (1.2)

where εt are white noise (0, σ2) and
∑∞
j=−∞ |αj | <∞. Then following result holds

(i)
√
N(x̄− µ)

N−→ N
(
0, γ(0)

∑∞
r=−∞ ρ(r)

)
(ii) if Eε4t <∞ then

N1/2 [γ̂(0)− γ(0), γ̂(1)− γ(1), . . . , γ̂(k)− γ(k)]
N−→ N(0,W)

(iii) if Eε4t <∞ and
∑∞
j=−∞ |j|α2

j <∞ then

N1/2 [ρ̂(1)− ρ(1), . . . , ρ̂(k)− ρ(k)]
N−→ N(0,G)
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where W and G are as defined before.

Proof of Theorem 1.4: We note here that

E (xt) = µ

E (x̄) = N−1
N∑
t=1

E (xt) = N−1Nµ = µ

and variance of the estimator of mean is

var(x̄) = var[N−1
N∑
t=1

xt] = N−2
N∑
s=1

N∑
t=1

cov[xs, xt]

= N−2
N∑
s=1

N∑
t=1

γ(t− s) = N−2γ(0)

N−1∑
r=−(N−1)

(N − |r|)ρ(r)

= N−1γ(0)

N−1∑
r=−(N−1)

(1− |r|/N)ρ(r)

Now that
E
(√

N(x̄− µ)
)

= 0

and

var[
√
N(x̄− µ)] = Nvar(x̄)

N−→ γ(0)

∞∑
r=−∞

ρ(r),

it follows from above that
√
N(x̄− µ)

N−→ N(0, γ(0)

∞∑
r=−∞

ρ(r)).

Now, if Eε4t < ∞ then {xt} is stationary up to order four and by lemma 1.2 second part of the theorem
holds. Similarly, by lemma 1.3 last part of the theorem can be proved.

Corollary 1.1. If εt in (1.2) is a Gaussian white noise process then κ4(r, p, q − p) ≡ 0 and

N1/2 [γ̂(0)− γ(0), γ̂(1)− γ(1), . . . , γ̂(k)− γ(k)]
N−→ N(0,W)

where wp+1,q+1 =
∑∞
r=−∞{γ(r)γ(r + q − p) + γ(r + q)γ(r − p) is the (p+ 1, q + 1) element of W.

Similarly,

N1/2 [ρ̂(1)− ρ(1), . . . , ρ̂(k)− ρ(k)]
N−→ N(0,G)

where (p, q) element of G is

gp,q =

∞∑
r=−∞

{ρ(r)ρ(r + q − p) + ρ(r + q)ρ(r − p)

− 2ρ(p)ρ(r)ρ(r − q)− 2ρ(q)ρ(r)ρ(r − p) + 2ρ(p)ρ(q)ρ(r)2}.
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1.3.2.1 Example 1: White noise process

If {xt} is a white noise process then γ(h) = 0 for h 6= 0. By inserting γ(h > 0) = 0 in lemma 1.1 the mean
of the sample autocovariance function is obtained as

Eγ̂(h) =

{
− (N−h)γ(0)

N2 if h > 0;
(N−1)γ(0)

N if h = 0.
(1.3)

If {xt} is Gaussian white noise process then κ4(.) ≡ 0 and from results in lemma 1.2 we may write

cov[γ̂(p), γ̂(q)] =


0 if p 6= q;
(N−p)γ(0)2

N2 if p = q > 0;
2γ(0)2

N if p = q = 0.

(1.4)

Similarly, the mean and variance of sample autocorrelation function are

E[ρ̂(h)] ≈ Eγ̂(h)

Eγ̂(0)
=
−(N − h)γ(0)

N2

N

(N − 1)γ(0)
= − N − h

N(N − 1)
(1.5)

cov[ρ̂(p), ρ̂(q)] ≈ cov[γ̂(p), γ̂(q)]

γ(0)2
=

{
0 if p 6= q;
(N−p)
N2 if p = q > 0.

(1.6)

Thus for any fixed k,

√
N

[
γ̂(1) +

(N − 1)γ(0)

N2
, γ̂(2) +

(N − 2)γ(0)

N2
, . . . , γ̂(k) +

(N − k)γ(0)

N2

]′
∼ N(0,Ω) (1.7)

where Ω = γ(0)2diag
(

(N−1)
N , (N−2)N , . . . , (N−k)N

)
. Similarly, the distribution of autocorrelation function is

√
N

[
ρ̂(1) +

(N − 1)

N(N − 1)
, γ̂(2) +

(N − 2)

N(N − 1)
, . . . , γ̂(k) +

(N − k)

N(N − 1)

]′
∼ N(0, γ(0)−2Ω) (1.8)

1.3.2.2 Example 2: m-dependent process

A stationary sequence {x1, x2, . . .} is said to be m-dependent if xt and xs are independent, that is, γ(s−t) = 0
whenever |s− t| > m. Let us consider a MA(m) process which is

xt = εt +

m∑
j=1

εt−j (1.9)

where εt are independently and identically distributed random variables. Since forMA(m) process γ(m+1) =
0, this is an example of m-dependent process. In this case, the mean and variance of sample autocorrelation
function for any p, q > m and 0 ≤ |q − p| ≤ 2m, we have Eρ̂(p) = 0 and

cov[ρ̂(p), ρ̂(q)] =
cov[γ̂(p), γ̂(q)]

γ(0)2
=

1

N

m−|q−p|∑
r=−m

(
1− η(r) +max(p, q)

N

)
ρ(r)ρ(r + |q − p|)

where

η(r) =

 r when 0 < r < m− |q − p|;
0 when −|q − p| ≤ r ≤ 0;
−r − |q − p| when −m ≤ r < −|q − p|.
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A large sample approximation of the covariance is

Ncov[ρ̂(p), ρ̂(q)]
N−→

m−|q−p|∑
r=−m

ρ(r)ρ(r + |q − p|) (1.10)

which yields √
N [ρ̂(m+ 1), ρ̂(m+ 2), . . . , ρ̂(m+ h)]′

N−→ N(0,Ω) (1.11)

where Ω = [ωp,q]p,q=1,...,h and ωp,q =
∑m−|q−p|
r=−m ρ(r)ρ(r + |q − p|).


