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Chapter 1: Autocovariance Function
Atikur R. Khan, University of Rajshahi

1.1 Autocovariance and autocorrelation functions

e Autocoriance function (ACF): v(k) = E[(x: — p) (Tt — 1))

N

e Autocorrelation function: p(k) = %

o If y = Efz:] = 0 then y(k) = E[zixi1k]
In practice y(k) is not known and is estimated from the data.

e {x1,29,...,2N} be a realization of the process x; of length N

o (k)= LN, (@ — @) (g — ) for k=0,1,...,N — 1.

. ﬁ(k):7(—’g§7k:0,1,...,N—1.

1.1.1 Example 1: US Accidental death data

Figure 1.1 shows monthly US accidental death numbers. This data set is readily available in R and has been
used in numerous books and articles. We would like to examine autocovariance property of this time series.

Figure 1.4 shows autocorrelation function (px, k = 0, 1,...,24) of US accidental death data. A 95% confidence
interval (CI) is also added to the plot. Not all autocorrelation are lying within the CI and are not close to
zero. This indicates the data is not random, rather depicts a high degree of autocorrelation between adjacent
and near adjacent observations. Also, spikes of autocorrelation functions appear to be in cyclical fashion
with an indication of existence of strong seasonal pattern in the data.

IPrepared by Atikur R. Khan (atikrkhan@gmail.com).
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Figure 1.1: Monthly USA accidental death data

/ﬁf;ode to produce Figure 1.1: ﬁ\\\

plot.ts(USAccDeaths,xlab="",ylab="",main="")
mtext ("Number of deaths",side=2, cex=0.9, line=+1.75)
mtext ("Months", side=1, cex=0.9, line=+1.6)

R code to produce Figure 1.2:
acf (USAccDeaths, lag.max=24, type="correlation", ci=0.95, xlab="k",

ylab="", main="", axes=FALSE)
axis(1, at=c(0.0, 0.5, 1.0, 1.5, 2.0), label=c(0,6,12,18,24) )
axis(2)
box ()
mtext (bquote( hat(rhol[k]) ),side=2,cex=1.1,line=+1.75)
\\\\ mtext ("k", side=1, cex=1, line=+1.6) 4///

1.1.2 Example 2: Nottingham castle temperature data

This data set comprises monthly temperature data (in degrees Fahrenheit) of 20 years from January 1920
to December 1939. There is a clear seasonal pattern in the data (Figure 1.3) and we would expect auto-
correlation function to show some spikes appear to be in cyclical patterns. Figure 1.4 shows that many
autocorrelation functions are outside the 95% CI and there is a very strong autocorrelation in the data.

1.2 Covariance stationary process
A time series {z;} is covariance stationary if the mean and covariance function does not depend on time ¢
so that

E(xy) =p for all t
Cov(zy, xi—k) =F [(r — p)(zp—, — p)] = (k) for all ¢t and any &
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Figure 1.2: Sample autocorrelation function of monthly USA accidental death data
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Figure 1.3: Monthly Nottingham castle temperature

1.2.1 Wold’s representation

1-3

Wold’s representation theorem, namely, that if z; is a linearly regular, covariance-stationary process then z;

can be expressed as

o
Tty = W + Z H(j)gt—j )
j=0

(1.1)
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Figure 1.4: Sample autocorrelation function of monthly Nottingham castle temperature data

where ¢; is a zero mean white noise (innovation) process with variance o2. The coefficients of the transfer
function k(z) = 3,5 w(j)2 satisfy the conditions £(0) = 1 and Y- -, k(5)* < 0o. Tf 0 < 37,5 [K(5)] < o0
then z; is said to be a short memory processes, whereas if - |1(j)| = oo then z; is said to exhibit long
memory, see Beran (1994) or Palma (2007). This division of linearly regular processes into short and long
memory series according to the speed of decay of their impulse response coefficients proves to be of crucial
importance in our subsequent analysis.

Definition 1.1. A stationary process x is linearly reqular (nonsingular) if and only if X_oo = (Noeg P —
0 and linearly singular (deterministic) if and only if X—oo = X = Use_ X2,

From the argument presented in Ibragimov & Linnik (1971, Section 17.1) we can deduce the following result.

Theorem 1.1. A necessary and sufficient condition for x; to be a linearly reqular, stationary process is that,
for all ¢ € X with E[(?] < o0,
i supe| E[EC] — E[E]E(C]] =0,

where the supremum is taken over all £ € Xt with E[€?] < cc.

oo

Theorem 1.1 conveys the idea that for a linearly regular process events become uncorrelated (orthogonal) with
increasing separation, and if we suppose that z; for ¢t € Z is a linearly regular, covariance-stationary process,
with mean E[z;] = p and autocovariance function E[(z; — u)(ztyn — )] = v(h), an obvious implication of
the theorem is that |y(k)| — 0 as k — oc.

1.2.2 Example 1: White noise process

If z; = g; where &, ~ WN(0,0?), then we get

E(l‘t) :E(Et) =0
Var(z;) =Var(e;) = o*

Cov(xy, xe—k) =Var(ey,ei—) =0



Chapter 1: Autocovariance Function 1-5

1.2.3 Example 2: Sinusoidal signal

Dealing with sinusoidal signal is very common in time series analysis especially in engineering and physics.
Here we consider an example from Khan and Poskitt (2010) where cosine series is generated by using the
formula

P
Ty =p + Z A,cos(\t+6,)

r=1

Yt =Tt + €

where p is the mean signal, A, is the amplitude, A, is the frequency (number of cycles per unit measured
in radians), 6, is the phase uniformly distributed over the range (—m,7) and &; is the i.i.d. Gaussian noise
process with noise variance o2. The wavelength of the process is 27/\,..

Since amplitude A, and the frequency A, are constant at time ¢, we may write

b - T cos(At+0,)
E(xy) =p+ ZATE [cos(Art+6,)] = pn+ ZA” Td&,« =L
r=1 r=1 -

Similarly, we can show that

2 1NP 42 :
45> Afcos(Ah) i h #0;
Blewen) = { RS A if h=0.
and
2 1NP g2 :
YT Aeos(Mh) iR A,
Bluyen) = { w2 ISP A2 itnso.

Thus the process is covariance stationary and the signal-to-noise ratio of this process can be written as

2 1 P A2
SNR = 10log,, (“4_222:7‘—”> dB.
o

1.3 Properties of sample autocorrelation function

Let 21,22, ...,7x be a sample from the time series {x; : t € T} with finite mean p and variance o2 then the
hth sample autocorrelation function is

sy = § NS = e — ) 0,
N Zt;ll | TtLg|n| if p=0.

1.3.1 Asymptotic mean and variance

Lemma 1.1. If {z;} be a time series with mean p = Ex; < 0o and variance o2 = var(z;) < oo then

1= &) if 1=0;
1= D) [(h) — N=15(0) SN oy (L= [rl/N)p(r)] if 1 # 0.

where fi = N1 Zivzl x¢ and f(0) is the spectral density at frequency zero.

BA(h) =
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Proof of Lemma 1.1: When y = 0:

N—|h|

E4(h) =N"' > Bz
t=1

= NN [h ()
~(1-5)m

When p # 0:

N—|n]|
A -1 Z (¢ — Z) (@440 — T)
N— |h|
=N"! Z )(@eqpn) — 1) = (7 — p)?]
N— |h|

=N~ Z — var(z)]

Now var () ~ 27T+(O)f(0) yields E4(h) ~ (1 - %) [’y(h) - 27r+(mf(0)}, which completes the proof.
Lemma 1.2. If {z;} is a zero mean stationary process and is stationary up to order four then
(i) E4(h) = (1= £)y(h) for h >0
(ii) cov [1(p), 3(0)] = % SNy [L = B8] 1)1+ g = p) +3(r + @9 (0 = p) + Kalrp.g — )}
where ka(s —t,p,q — p) is the fourth joint cumulant of the distribution of {x¢, Tiyp, Ts, Tstq} and
r when r > 0;

77(7“) = 0 when —(q _p) S T S O;
—r—(g—p) when —(N—p)+1<r<—(qg—p).

(ii) For large N, Ncov [3(p), 4(q)] ~ 2272 _ o Av(r)v(r +q —p) +v(r + @)y(r — p) + wa(r,p,q — p)}

Proof of Lemma 1.2: First part of the lemma is drawn from lemma 1.1. For the second part, we use the
usual definition of covariance by considering the case p,q > 0,

cov [4(p),¥(9)] = E[7(p)3(q)] — E[7(»)] E[¥(q9)]

2

—q

12 Zp E xt$t+pxsms+q) - (1 - %) (1 - %) 'Y(p)'Y(Q)

t=1 s=1

where

B4 pTsTstq) = Blai@iyp|E[Ts@siq] + Bl2ixs| BTy pTotq] + Elriterg| ElTs2iqp] + Ka
=@ (@) +v(s—t(s+qg—t—p)+v(s+qg—t)y(s—t—p)+ k4
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and k4 = ka(s—t,p,q—p) is the fourth joint cumulant of the joint distribution of {x;, i1, Ts, Ts44}, which
yields

N—p N—
cov [¥(p),4(q ZZ (s—t(s+q—t—p)+y(s+q—t)y(s—t—p)+ ka(s —t,p,q—p)}

The sum over s,t depends only on their difference in the form of s — ¢t. Letting s — ¢ = r and changing
variable from s and ¢t to » = s — ¢ and t we can break the double some and can write (Priestley 1981, sec.,
5.3.3) in the form as in lemma 1.2.

. N N A~ [e%s)
Since 12+ %5 0, for large N, Neov [4(p), 4(q)] ~ 302 Av(r)v(r+q—p)+7(r+)y(r—p)+ra(r, p, a—p)}-

Lemma 1.3. If {x;} is a zero mean stationary process and is stationary up to order four then

(i) Bph) ~ (1= ) ()
(ii) cov [p(p). p(@)] = =z Leovl3(p). A(@)] — pp)eov[§(0). 4(p)] — p(p)eovl3(0). 4(a)] + p(p)pla)var3(0)]}

(iii) For large N

Neov [p(p Z {p(r)p(r +q—p) + p(r + @)p(r — p) — 2p(p)p(r)p(r — q) — 2p(q)p(r)p(r — p)
+2p(p)p(Q)p(r)*} + Y {ka(r,p,q = p) + Ka(r,p, —p) + Ka(r, ¢, —q) + £a(r,0,0)}

where cov [¥(p),¥(q)] as defined in lemma 1.2.

Proof of Lemma 1.3: Let us define §{%(h)} = 4(h) — E4(h) and 6{y(h + k)} = 4(h + k) — EY(h + k).
Assuming §{J(h)} and §{%(h + k)} very small (Priestley 1981, eq. 5.3.34) an approximation yields

e~ g = (1- 5 ) o)

We may write that

S0} = 3t
~ 10)5{3 ()} — 3P)6{7(0)}
7(0)2
i) v()fA(0)}
7(0) 7(0)2

and

Thus we may deduce that

Q

covlp(p), p(q)]



Chapter 1: Autocovariance Function 1-8

where we may define each term separately and rewrite the above equation as

N N N—g—1
NCOU[J((OZS); 7(a)] = Z <1 - 777(7’])V+ q> {p(r)p(r +q—p)+ p(r +q)p(r —p)
r=—(N-p)+1

+ :‘€4(7"7p,q _p)}

& 3" {pr)p(r +q —p) + plr + q)p(r — p) + kalr,p,q — p)}

T=—00

It is now straightforward to show that

Ncov[;y((oo); ¥(p)] N T;m{zp(r)p(r —p) + ka(r,p,—p)}
Ncov[j((oo) Qﬁ(p)} N, T_z_:oo{zp(r)p(r —q) +ka(r, ¢, —q)}
w = T_Z:OO{%(T)Q +£a(r, 0,0)}

By adding the all four terms, we get the last part of lemma 1.3.

1.3.2 Asymptotic distribution

Theorem 1.2. If {z;} is a zero mean stationary process and is stationary up to order four then for any
positive integer k,

NV [5(0) = 4(0),40) — 2,4k — T Ea )| 2 N0, W)

where W = [Wp glp.a=1,...k+1 and Wyi1 q41 = Neov [¥(p),5(q)].

For large sample, the bias of the sample autocorrelation function becomes zero and the limiting distribution
18

NY2[(0) = 5(0), (1) = 4(1), ..., 4(k) = (k)] = N(0, W)

where

W = [wp,q]p,q=1,---7k

and

Wp+1,q+1 = lim Ncov [’?(p)aﬁ/(q)]

N—oc0

= > {0 +q—p) + 7+ @)v(r = p) + ka(s,p.q —p)}-

r=—00

Proof of Theorem 1.2: Let v = [y(0),7(1),...,7(k)] be a vector of first k& autocovariances. By lemma
1.2, we may note that
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N-1 N -k

E (':/) = 7(0)7 TV(l)’ RE)

N~'Wy = E[{¥ — EAH{% — EAY

where

Wpi1,4+1 = NE[{3(p) — EA(p)HA(9) — E5(q)}']
= Ncov [4(p), 7(q)]

By using CLT we may write

N2 — EA] = NY215(0) = 7(0),7(1) = =——(1),.... (k) — v(k)| ~ N(0,W).

For very large N, E (4 — ) N, 0 and the above equation yields

NY2[3(0) = 7(0),4(1) = 7(1),-..,5(k) — (k)] ~> N(0, W)

the asymptotic distribution of first & autocovariances.

Theorem 1.3. If {x:} is a zero mean stationary process and is stationary up to order four then for any
positive integer k,

N1/2 p(1) — Ep(l)”ﬁ(Q) — %p@), o plk) — N]\; i

p(k)| 2 N(0,Gy)

where Gn = [Gp glp.g=1....k+1 and Gp 4 = Ncov [p(p), p(q)]-

For large sample, the bias of the sample autocorrelation function becomes zero and the limiting distribution
18
. . N
NY2[3(1) = p(), .., p(k) — p(k)] 2> N(0,G)

where G = [gp.qlp.g=1,...k and gpq = Imy_.oc Ncov [5(p), (q)] defined in lemma 1.5.

Theorem 1.4. If {x;} be a general linear process of the form

Ty = p+ z Q€ (1.2)

j=—o0
where € are white noise (0,0%) and Y e oo laj| < 0o, Then following result holds
(i) VNG = 1) = N (0,9(0) 72 (1))
(ii) if Ee} < oo then
N2 [3(0) = 4(0), (1) = v(1), .., 4(k) = 7(k)] = N(0, W)
(i) if Bef < oo and Y272 |jlaF < oo then

N2 [p(1) = p(1),..., (k) = p(k)] = N(0,G)
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where W and G are as defined before.
Proof of Theorem 1.4: We note here that

E(xe) =p

and variance of the estimator of mean is

N N N
var(z) = var[N~'Y x]) = N2 Z Z cov[xs, ]
t=1 s=1t=1

N N N-—1
=N D qt—s)=N"29(0) > (N=I|r)p(r)
s=1t=1 r=—(N-1)
N-—1
=N"'y(0) > (1= |r|/N)p(r)
r=—(N-1)
Now that
E (\/N(z - #)) =0
and -
var[VN(z — )] = Nvar(z) % (0) > p(r),
it follows from above that -
VN(E = 1) 5 N(0,4(0) 3 p(r))

1-10

Now, if Ee} < oo then {x;} is stationary up to order four and by lemma 1.2 second part of the theorem

holds. Similarly, by lemma 1.3 last part of the theorem can be proved.

Corollary 1.1. Ife; in (1.2) is a Gaussian white noise process then k4(r,p,q — p) =0 and

NY23(0) = 7(0),4(1) = 7(1),..., (k) — (k)] ~> N(0, W)

where Wyi1,g41 = Y e AV +q—p) +v(r+ @)y(r —p) is the (p+ 1,q+ 1) element of W.

Similarly,

NY2[p(1) = p(1),..., (k) — p(k)] == N(0,G)

where (p,q) element of G is

gpa =Y {p(r)p(r+q—p)+ p(r + q)p(r — p)

r=—00

—2p(p)p(r)p(r — q) — 2p(q)p(r)p(r — p) + 2p(p)p(q)p(r)*}.
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1.3.2.1 Example 1: White noise process

If {z;} is a white noise process then y(h) = 0 for h # 0. By inserting v(h > 0) = 0 in lemma 1.1 the mean
of the sample autocovariance function is obtained as

_ (N=h)v(0) ifh>0:
E4(h) = N ! ’ 1.3
A(h) { (Nfllv)'y(o) i h=0. (1.3)

If {x;} is Gaussian white noise process then k4(.) = 0 and from results in lemma 1.2 we may write

0 if p # q;
covli(p), /()] = ¢ LR if p =g > 0; (1.4)
L](\(,)) if p=qg=0.

Similarly, the mean and variance of sample autocorrelation function are

o EA(h) (N = h)v(0) N __ N-h
P B0) = N 3 -1Da0) K- (1)
R cov[§(p), ()] 0 if p # q;
cov[p(p), p(q)] ~ ~(0)2 {(%ﬁﬁpq>a (1.6)
Thus for any fixed k,
Vi i+ S s+ T+ SO cvo )
where = v(0)2diag (%, (LJGZ), cee Lﬁ) Similarly, the distribution of autocorrelation function is
VN {,3(1) + m,&(z) + ]\m AR + M] ~ N(0,7(0)-29) (1.8)

1.3.2.2 Example 2: m-dependent process

A stationary sequence {x1, xa, ...} is said to be m-dependent if z; and z; are independent, that is, y(s—t) = 0
whenever |s —t| > m. Let us consider a M A(m) process which is

Tr = € + Zet,j (19)
j=1

where €; are independently and identically distributed random variables. Since for M A(m) process y(m+1) =
0, this is an example of m-dependent process. In this case, the mean and variance of sample autocorrelation
function for any p,q > m and 0 < |¢ — p| < 2m, we have Ep(p) = 0 and

R . m—|q—p|
covlp(p), plg)] = O@AD] _ L (1 _ lr) - maz(p, ‘”) p(r)olr + g — p)

7(0)? N = N
where
r when 0 <r <m —|q — p;
n(r)=4 0 when —|g —p[ <7 < 0;

—r—|¢g—p| when —m <r < —|g—p|.
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A large sample approximation of the covariance is

m—|q—p|

Neov[p(p), p(q)] X, Z p(r)p(r + lq —pl)

r=—m

which yields
VN[p(m+1),p(m+2),..., p(m+ k)] 2 N(0,9Q)

where = [wy, 4]pg=1,...,n and wy ¢ = E::Jgn_pl p(r)p(r +1q —pl)-

1-12

(1.10)

(1.11)



