
© Dr Atikur R. Khan • Open Centre for Data Science • American International University - Bangladesh 1

Chapter 2
Working with PySpark

1. Spark Capabilities

Spark is capable of doing almost everything you need to process and work with big data sets. It achieves

scalability through its built-in nature and can work with scripts written in Scala, Java and Python. On top

of it, you may wish to use different libraries to conduct your work.

SparkStreaming: This is used to work with the data set that updates frequently or near real-time or real-

time. For example, weblog or social media or smart meter data that is updated (or) changed over time

very fast.

SparkSQL: This enables running Spark on top of Hive context and is generally used to make queries for

data subjects/objects/variables on structured data. Essentially, this is SQL (sequel) in Spark context for

structured data (data warehouse, databases).

MLLib: This library contains a set of machine learning algorithms. You can use this library for statistical

analysis of your RDD. Most of the statistical output can be derived by using this library.

GraphX: This is particularly useful for any graphical analysis based on graph theories and is generally used

to extract high level information on networks, say, for example, social network to know how people are

linked and how they communicate with each other.

2. Spark with Python

There are three different choices for scripting languages: Python, Scala, and Java. Using Python has some

good favors for analysts and data scientists:

(1) Less coding required: only few lines of codes can do lots of work for you.

(2) No dependency requirement for compiling and running scripts

(3) Built-in libraries are ready for use

(4) Though Scala is native to Spark, you can do similar task in Python. Further, there are lots of

similarities between Scala and Python when used with Spark.

© Dr Atikur R. Khan • Open Centre for Data Science • American International University - Bangladesh 2

3. How Does This Work?

It determines workflows and optimize workflows by using DAG (directed acyclic graph) controller/ engine.

It’s work type cane explained by the following graph. It creates a Spark Context as part of Driver Program

(sometimes it is called Master). This Driver Program (or Master) communicates with Executors (also

known as Executor Nodes/ Slaves/ Cores) via a Cluster Manager.

As can be seen in the above figure, both driver program and cluster manager can form and distribute work

in different nodes (or cores of your computer). The beauty of Spark is that it is not only scalable but also

fault tolerant. By fault tolerance we mean that when a node (or an executor or a core) stops working (or

goes down), the entire execution process does not go down: It keeps working and at some point either

recovered or passed to the next available node (slave or core) that becomes take on the job. In fact, it

scales up to entire cluster of computers (or CPU cores in your computer when use as standalone mode).

But as a programmer you will see it working by running scripts in your own computer in usual way, and

we explore this by running a simple script in next sections.

3.1 Creating Resilient Distributed Data (RDD)

Driver program works through a context to proceed with RDD objects and this is the core object the Spark

system works with. Essentially, this refers to data set, an abstraction of a giant set of data. Though RDD is

resilient and distributed, and can work/spread across entire cluster of computers (or nodes or cores of

your computer). We need to set up of RDD objects and load them with big data sets. Next we call various

methods/functions to work with these RDD objects for distributed processing of data.

This may or may not work locally, but can handle with failure of any working nodes/cores automatically.

If one of the core/node shuts down, this can be recovered or can be passed to the other nodes to get the

job done. This is one of the most beautiful advantage of Spark over other computing environment, say,

for example, with Hadoop ecosystem.

Speed is also extremely good. It is 100x faster than Hadoop MapReduce for in-memory processing and

around 10x faster when processing is done in disks.

Driver Program/ Context Cluster Manager

Executor

Executor

Executor

© Dr Atikur R. Khan • Open Centre for Data Science • American International University - Bangladesh 3

With a lot of flexibility of computational tools, you may use either Python or Scala or Java as your scripting

language. It is always good to learn more than one scripting language. But if you learn Python carefully, I

believe you can do almost everything with Spark. Though Scala is the native language of Apache Spark

(Spark is built on Scala), Python in Apache Spark works in a similar fashion. So, if you are good at Python,

then you can utilize full power of Apache Spark. I would prefer Python, because it will support for all sort

of machine learning, predictive and graphical models with existing Python library functions.

3.2 Creating Spark Context

Let us come back to the concept RDD. As a developer and data scientist/analyst, you only need to know

the data environment to change the data structure from one environment to the other (one structure to

the other). So, we create a context for data to transfer with respect to its structure. This is the Spark

Context (“sc” is used in coding to refer this) object that we create to do all operation in Spark.

At the beginning of the constructing a Spark Context, we should import Spark libraries for Python (as can

be seen in the above snippet): from pyspark import SparkConf, SparkContext where SparkConf is used to

do configuration and SparkContext is used to assign context based on that configuration.

As can be seen in the snippet, configuration is set to “local” not to “cluster”, this means that the context

is designed to work with a single core of local machine (computer). The setAppName assigns the task

name by which we understand the type of work is going to be done in the context (for example, working

in the context of EnergyRating as shown in the snippet). Once this configuration and context settings are

done, you are now ready to create RDD. For example,

RDD = sc.textFile(“README.md”)

creates a context that reads text data from README.md file. To create a RDD from Spark context use the

command

datalines = sc.textFile(“file:///c:/SparkPythonCourse/energyrating.txt”)

This abovementioned context is suitable only when you have a data file that is stored on disk and can be

accessed by assigning a path to the file and the file is not too big to fit in the disk (simply not big enough,

not a big data). However, this can be done for other data types, for example, to access distributed data

we use

s3n:// and hdfs:// (are used for distributed data sets when they do not fit within the machine)

© Dr Atikur R. Khan • Open Centre for Data Science • American International University - Bangladesh 4

In this snippet shown above, we see that a Spark Context (sc) has been defined and later an RDD (here,

datalines) is created by using the “sc”. The RDD is an object that reads (contains) lines (each row is

considered as a line). This energyrating.txt file contains rows with information related to item id, product

code, energy rating (star), warranty period, product life, and claim status (free text).

1 358625461 12 1.5 9 Refund
2 458625452 24 3.5 18 Replace
3 459625460 12 2.5 10 Refund
4 358625472 24 4.5 22 Repair
5 458725461 24 4.0 17 Replace

So the RDD (datalines) contains 10K lines shown above (not big enough, but good for a handy example),

where the first value of this RDD is the first line of text, second value is the second line of the text, and so

on. Each text line is then considered as a single string with some white spaces inside. In order to work with

this, we need to do some transformation of this RDD.

3.3 Transformation of RDD

RDDs can be transformed from one RDD to the other and this is made possible by using some buit-in

functions. Some example functions are:

 map: This gets some data and transforms to another set of data. This function transforms data

ensuring a one-to-one relationship with previous RDD.

 filter: This function filters out information (keyword, message, error message, etc.) from the

data. Thus after throwing out uninteresting information, this produces another RDD.

 distinct: This is used to obtain an RDD with distinct/unique values (properties).

 union: To obtain union of two RDDs

 intersection: Two obtain intersection of two RDDs

 subtract: Subtracts one RDD from the other.

 sample: To obtain a random sample from the RDD to construct another set of RDD (data) with

size smaller than the original one.

© Dr Atikur R. Khan • Open Centre for Data Science • American International University - Bangladesh 5

3.4 Actions on RDD

Nothing happens, until an action is performed. Spark becomes ready by constructing a DAG for workflow

and wait for an action to complete the task. When an action is called, it gets to work. This behavior is

known as Lazy Operation in Spark. Some actions command could be like these:

count: This produces the number of elements in the RDD and the following action produces a result 3.

sc.parallelize([1, 2, 3]).count()

countByValue: Count by unique values, the following action produces results like (number, number of

times) as here in

(1, 3)

(2, 2)

sc.parallelize([1, 2, 1,1,2]).countByValue()

collect: This returns a list of elements in the RDD, for example, the following action produces [1, 2, 3]

sc.parallelize([1, 2, 3]).collect()

reduce: may use combinations of operations and mapping to produce results for program driver

sc.parallelize([1, 2, 3]).reduce(lambda a,b: a+b)

take: takes specified number of values from the beginning of an RDD, for example, the following action

takes the first element in the RDD and produces the result 1 for the first action, [1, 2] for the second

action, and [1, 2, 3] for the third action.

sc.parallelize([1, 2, 3]).take(1)

sc.parallelize([1, 2, 3]).take(2)

sc.parallelize([1, 2, 3]).take(10)

© Dr Atikur R. Khan • Open Centre for Data Science • American International University - Bangladesh 6

3.5 Transformation + Action

Transformation refers to the operation applied on a RDD to create new RDD. Whereas, actions refer to an

operation which also applies on RDD, that instructs Spark to perform computation and send the result

back to driver.

Mapping as transformation: An example of this is assign data to construct RDD and then use map function

for transformation.

RDD1 = sc.parallelize([1,2,3])

RDD2 = RDD1.map(lambda x: x+2)

So, RDD1 contains values 1,2,3 but RDD2 contains values 3,4,5.

Sometimes the function, like the lambda function above, may not be simple and in that case we may

define a separate function and call that function to do a similar sort of mapping operation. For example,

© Dr Atikur R. Khan • Open Centre for Data Science • American International University - Bangladesh 7

def add2(x):

 return x+2

RDD2 = RDD1.map(add2)

In the above snippet, we used the Warranty Claim data. This mapping process transforms the RDD by

splitting the text by whitespace to individual field and then by assigning the third field/split to

WarrantyPeriod (new RDD). Similar transformation happens with ProductLife and EnergyRating. We can

also define the function as has been defined earlier and can use this too as in the snippet. Thus the

LifeShortage is a RDD is

3

6

2

2

7

Counting by value for action: For example,

LifeCount = LifeShortage.countByValue()

provides value pairs

(3, 1)

(6, 1)

(2, 2)

(7, 1)

3.6 Running a Python Script

Let us locate an example file considered for this course: the file is in C:/SparkPythonCourse/Programs

and the file name is PracticeLoanData.py.

© Dr Atikur R. Khan • Open Centre for Data Science • American International University - Bangladesh 8

Double click on the file and this will open a window like shown below. Now trace the location of your

data file in the computer and change the path to the data file. The text file contains a data snippet (age,

sex, household income, number of dependents, car loan, property ownership, group) to check manual

work with coding works.

44 M 57000 0 No Rent 2
35 F 56000 1 Yes Own 1
39 F 76000 2 Yes Rent 2
53 M 65000 1 Yes Rent 1
43 F 45000 3 No Own 2
37 M 49000 1 No Own 2

© Dr Atikur R. Khan • Open Centre for Data Science • American International University - Bangladesh 9

© Dr Atikur R. Khan • Open Centre for Data Science • American International University - Bangladesh 10

3.7 Some Common Transformations

Filtering is done by using a lambda function in pyspark.

© Dr Atikur R. Khan • Open Centre for Data Science • American International University - Bangladesh 11

Distinct is used to find distinct type of categories involved in data. This can produce RDD with distinct

categories or values. As can be seen in the script and result snippets, we can find the distinct type of

home ownership from the above practice dataset.

© Dr Atikur R. Khan • Open Centre for Data Science • American International University - Bangladesh 12

Union of RDDs can be done by simply using the union command but that depends on the circumstances.

If there are many RDDs or RDDs generated over a number of executions and union of RDDs is required for

computational purposes, we may define a function to make union for a large number of RDDs. In the

following example we apply mapping and filtering to construct two distinct RDDs and then apply union to

get back the original RDD.

From SparkContext we may define two RDDs like

Rdd1 = sc.parallelize([1,2])
Rdd2 = sc.parallelize([3,4])
Rdd1unionRdd2 = sc.union([Rdd1, Rdd2])
Rdd1unionRdd2.collect() provides the following output
[1,2,3,4]

Another approach is to use RDD1.union(RDD2) as can be seen in the following snippets.

© Dr Atikur R. Khan • Open Centre for Data Science • American International University - Bangladesh 13

Addition is used to add one RDD with the other (that essentially makes a union of RDDs). For example

RDD1 = sc.parallelize([1,2,3])
RDD2 = sc.parallelize([2,3,4])
(RDD1 + RDD2).collect() provides the following output
[1,2,3,2,3,4]

© Dr Atikur R. Khan • Open Centre for Data Science • American International University - Bangladesh 14

Using addition (by using +) in the above snippet will provide following outcome.

Intersection between RDDs can be done as follows

4. Descriptive Statistics (Actions on RDD)

There are some common operations and actions that produce summary statistics from Spark Context RDD.

Some of such very commonly used functions are discussed below:

Sum: Let us consider an RDD with values 1, 2, 3 defined as sc.parallelize([1, 2, 3]) and the sum can be

obtained by using an action for that RDD. The following action on RDD produces the result 6.

sc.parallelize([1, 2, 3]).sum()

Mean: This instance produces the mean from an RDD, where the following command produces (1+2+3)/3

= 2.0

sc.parallelize([1, 2, 3]).mean()

© Dr Atikur R. Khan • Open Centre for Data Science • American International University - Bangladesh 15

Variance: This produces the variance

sc.parallelize([1, 2, 3]).variance()

Sample Variance: This produces sample variance, replacing the N by N-1

sc.parallelize([1, 2, 3]).sampleVariance()

Standard Deviation: To obtain standard deviation use

sc.parallelize([1, 2, 3]).stdev()

Sample Standard Deviation: Replaces N by N-1 in computation of standard deviation.

sc.parallelize([1, 2, 3]).sampleStdev()

Minimum and Maximum: These values can be obtained by using the following commands

sc.parallelize([4, 2, 5, 1, 2, 5, 1, 1]).takeOrdered(1) # gets minimum

sc.parallelize([4, 2, 5, 1, 2, 5, 1, 1]).takeOrdered(1,key= lambda x: -x)

© Dr Atikur R. Khan • Open Centre for Data Science • American International University - Bangladesh 16

5. Key Value Pair and RDDs

Count By Key: The following command produces a dictionary by counting key value pairs, for “a” we have

2 instances of pairs, and for “b” we have one instance for value pair.

rdd1 = sc.parallelize([("a", 1), ("b", 2), ("a",2)])

print(rdd1.countByKey().items())

Group By Key: This is used to group values by corresponding keys. This groups the values corresponding

to a key in a single sequence.

rdd1 = sc.parallelize([("a", 1), ("b", 2), ("a",2)])

print(rdd1.groupByKey().collect()) # produces result iterable object

print(rdd1.groupByKey().mapValues(list).collect())

Subtract By Key: Keys in RDD is subtracted, and is not subtracted in the absence of a pair.

rdd4 = sc.parallelize([("a", 1), ("a", 1), ("b", 5), ("a", 2)])

rdd5 = sc.parallelize([("a", 3), ("c", None), ("b",2)])

print("Subtract by key, both keys are subtracted resulting []: ",

sorted(rdd4.subtractByKey(rdd5).collect()))

the above commands produces []

rdd6 = sc.parallelize([("a", 3), ("c", 1)])

print("Subtract by key, key a is subtracted but not key b: ",

sorted(rdd4.subtractByKey(rdd6).collect()))

the above commands produce [(“b”, 5)]

© Dr Atikur R. Khan • Open Centre for Data Science • American International University - Bangladesh 17

Reduce By Key: Generally, a lambda function is used to provide a reduce option to reduce by key

 rdd4.reduceByKey(lambda x, y: x + y).collect()
this produces [(“a”, 4), (“b”, 5)]

© Dr Atikur R. Khan • Open Centre for Data Science • American International University - Bangladesh 18

6. Joining RDDs

Left and Right Outer Join: This action performs a left outer join of one RDD with the other.

6. Data Analysis (Producing Summary Statistics)

6.1 Configuration

Open a Jupyter Ipython Notebook and do necessary configuration (shown below and in Chapter 1).

If a pop-up window like below occurs, please Allow Access, otherwise will be blocked by the windows

firewall system.

© Dr Atikur R. Khan • Open Centre for Data Science • American International University - Bangladesh 19

6.2 Calling Data File and Working on RDDs

Next, we call a file (PracticeLoanData.txt) and define a function (ParsingLines), and finally use them for

operations and actions on RDDs. The following snippet will then produce outputs.

© Dr Atikur R. Khan • Open Centre for Data Science • American International University - Bangladesh 20

Outputs obtained after running the above snippet would look like this.

6.4 Construction of Data Frame

For example, we have an RDD from group 1, that is, group1rdd. Now, we want to convert this RDD into a

data frame for easy manipulation of data for further use. We can use the following code snippet to get a

data frame from existing RDD.

© Dr Atikur R. Khan • Open Centre for Data Science • American International University - Bangladesh 21

6.5 Summary Statistics from Data Frames

A very simple command dataframe.describe (‘column name’).show() will provide you with summary

statistics such as number of counts, mean, standard deviation, minimum and maximum.

If you want to calculate a single satistic, say for exaple, mean age, then use the command

For cross tabulation of two variables sex and homeownership follow the snippet below:

In a nutshell, we have learnt how to play with the data for different operations and actions on RDD.

Finally, we have constructed data frame and made that data frame ready for statistical analysis. Our tiny

piece of data set in data frame form looks like the one produced below.

© Dr Atikur R. Khan • Open Centre for Data Science • American International University - Bangladesh 22

Cool, now go ahead with further analysis!!!

