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10.1 Regression Model

Linear regression analysis measures average relationship between dependent and explanatory variables, with
an objective to learn how explanatory variables affect the dependent variable. When only one explanatory
variable is used to measure this relationship, then it is known as simple linear regression. If more than one
explanatory variables are used to measure this relationship, then it is known as multiple linear regression.

• Dependent variable: For example, in an experiment, height (Y ) of a baby depends on baby’s age (X).
So, Y is a dependent variable, because it depends on X. Also, known as response variable, because we
observe values of Y in response to values of X.

• Explanatory variable: It explains the dependent variable. For example, age of a baby (X) explains
the height of a baby (Y ). It is also known as predictor variable, because it can be used to predict the
dependent variable. For example, when you go to the shopping centre to buy clothes, you essentially
predict size by the age of a baby.

10.2 Simple Linear Regression Model

A simple linear regression model consists of a single explanatory (or predictor) variable X to explain (or
predict) the dependent (or response) variable Y . This model is written as

Y = β0 + β1X + ε

where β0 (known as intercept) and β1 (known as regression coefficient) are parameters, and ε is an error
term.

Let us assume that we have data from n subjects (say, for example, n babies) as (y1, x1), (y2, x2), . . . , (yn, xn),
then the above regression model can be written as

1Prepared by Dr. Atikur R. Khan (atikur@aiub.edu).

10-1



Chapter 10: Regression Analysis 10-2

y1 = β0 + β1x1 + ε1

y2 = β0 + β1x2 + ε2

...

yn = β0 + β1xn + εn

In matrix and vector form, we may write


y1

y2

...
yn

 =


1 x1

1 x2

...
1 xn


(
β0

β1

)
+


ε1
ε2
...
εn

 (10.1)

⇒ y = Xβ + ε (10.2)

Here β is the vector of parameters and we want to estimate this parameter vector by minimizing the sum of
squared error. Since ε is the vector of errors in the model, we may write

ε = y −Xβ

and
ε′ε = (y −Xβ)′(y −Xβ) = y′y − y′Xβ − β′X′y + β′X′Xβ

where ε′ε is essentially the sum of squared error in the model. The least square method, minimizes this sum
of squared error with respect to β to estimate parameters. We find that

δ (ε′ε)

δβ
= 0

provides
−2X′y + 2X′Xβ = 0⇒ X′Xβ = X′y

which is known as the normal equation and by solving this equation we get

β̂ = (X′X)−1X′y

Least squares estimator is obtained by minimizing the sum of squares error, ε′ε. Thus we must make sure
that the minimization is happened when we estimate β. Let us check that

δ2 (ε′ε)

δβδβ′
= 2X′X

which is a positive definite matrix. Thus β̂ = (X′X)−1X′y is obtained by minimizing the sum of squares
error (SSE) and is known as a least squares estimator (LSE) of β.
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10.2.1 Mean and Variance of Estimator

We may write that

β̂ = (X′X)−1X′y = (X′X)−1X′ (Xβ + ε) = β + (X′X)−1X′ε

Thus the mean of β̂ is

E(β̂) = E
(
β + (X′X)−1X′ε

)
= β + (X′X)−1X′E(ε) = β

under the assumption that

(i) E(ε) = 0

(ii) ε ∼ N(0, σ2I) with independently and identically distributed εi ∼ N(0, σ2)

(iii) X is the matrix of known fixed values of uncorrelated variable (or variables), that is, X has rank equal
to number of its columns.

V (β̂) = E

[(
β̂ − E(β̂)

)(
β̂ − E(β̂)

)′]
= E

[(
β + (X′X)−1X′ε− β

) (
β + (X′X)−1X′ε− β

)′]
= E

[
(X′X)−1X′εε′X(X′X)−1

]
= σ2(X′X)−1

where σ2 is unknown parameter and we also estimate this parameter.

10.2.2 Fitted Line and Residuals

The fitted regression line is written as

ŷ = Xβ̂

⇒



ŷ1

ŷ2

...
ŷi
...
ŷn


=



1 x1

1 x2

...
...

1 xi
...

...
1 xn


(
β̂0

β̂1

)

⇒ ŷi = β̂0 + β̂1xi, which is the fitted line

Since y is the vector of original observations and ŷ = Xβ̂ is the vector of estimated observations, we compute
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vector of residuals

e = y − ŷ = y −Xβ̂

⇒



e1

e2

...
ei
...
en


=



y1

y2

...
yi
...
yn


−



1 x1

1 x2

...
...

1 xi
...

...
1 xn


(
β̂0

β̂1

)

⇒ ei = yi − β̂0 + β̂1xi, which is the estimated error (residual)

Now, the error variance σ2 can be estimated by using these residuals

σ̂2 =

∑n
i=1 e

2
i

n− k
=

∑n
i=1(yi − ŷi)2

n− k
=

(y −Xβ̂)′(y −Xβ̂)

n− k

where k is the number of X variable included in the model. For simple linear regression model, number of
X variable is one.

Thus the estimated variance of the estimator is

V̂ (β) = σ̂2(XX)−1

where diagonal elements are variances of estimators. Thus V (β̂0) is the first diagonal element of σ̂2(XX)−1

and V (β̂1) is the second diagonal element of σ̂2(XX)−1.

10.2.3 Testing of Significance

We are interested in testing whether the X variable(s) are significant or not. This leads to testing the null
hypothesis against an alternative hypothesis of the form

H0 = βj = 0, H1 : βj 6= 0

Test statistic is

t =
β̂j

se(β̂j)
∼ tn−k−1

where se(β̂j) is obtained from the diaginal elements of V̂ (β) = σ̂2(XX)−1, and k is the number of X variable
in the model.

10.2.4 Data Analysis

We want to fit a linear regression model of the form

Pricei = β0 + β1Sizei + εi

Thus, we may write in the form that
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Table 10.1: Price for size of residential flats
Flat Number Price (in million taka) Size (in thousand square foot)

1 12.5 2.5
2 7.5 1.5
3 11.0 2.4
4 8.5 2.0
5 11.5 2.2
6 12.0 2.5
7 6.5 1.2



12.5
7.5
11.0
8.5
11.5
12.0
6.5


=



1 2.5
1 1.5
1 2.4
1 2.0
1 2.2
1 2.5
1 1.2


(
β0

β1

)
+


ε1
ε2
...
εn


⇒ y = Xβ + ε

Thus β̂ = (X′X)−1X′y where y =



12.5
7.5
11.0
8.5
11.5
12.0
6.5


, X =



1 2.5
1 1.5
1 2.4
1 2.0
1 2.2
1 2.5
1 1.2


and β =

(
β0

β1

)
.

R Codes:

y = c(12.5, 7.5, 11.0, 8.5, 11.5, 12.0, 6.5) # for price

x1 =rep(1, times = length(y)) # for intercept term

x2 = c(2.5,1.5,2.4,2.0,2.2,2.5,1.2) # for size

X = cbind(x1,x2) # forms the X matrix

XX = t(X)%*%X # computes X’X

XX # produces following output

x1 x2

x1 7.0 14.30

x2 14.3 30.79

IXX = solve(XX) # produces inverse of matrix X’X

IXX # shows following output

x1 x2

x1 2.788949 -1.295290

x2 -1.295290 0.634058

betavector = IXX%*%t(X)%*%y # estimates beta vector

betavector # shows following result

[,1]

x1 0.8337862

x2 4.4519928

betavector[1] # shows the first coefficient beta_0
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[1] 0.8337862

betavector[2] # shows the second coefficient

[1] 4.451993

resid = y - X%*%betavector # vecror of residuals

n = length(y) # number of observation

k = 1 # number of variables

sigma2 = sum(resid^2)/(n-k) # estimate of noise variance

sigma2 # shows the result

[1] 0.4924894

VarBeta = sigma2*IXX

VarBeta # shows variance matrix as below

x1 x2

x1 1.3735280 -0.6379166

x2 -0.6379166 0.3122669

varbeta_0 = VarBeta[1,1] # variance of beta_0

varbeta_1 = VarBeta[2,2] # variance of beta_1

tstat = betavector[2]/sqrt(varbeta_1) # t-statistic for testing H_0: beta_1 = 0

tstat

[1] 7.966939

# now compare this test statistic with critical value, hats off!!!

10.3 Multiple Linear Regression Model

Let us now consider that there are more than one (say, k) independent (or explanatory) variables that can
be used to predict the dependent variable Y . Thus the regression model can be written as

Y = β0 + β1X1 + β2X2 + . . .+ βkXk + ε

yi = β0 + β1x1i + β2x2i + . . .+ βkxki + εi, where εi ∼ N(0, σ2)

Thus for n observations, we may write

y1 = β0 + β1x11 + . . . βkxk1ε1

y2 = β0 + β1x12 + . . . βkxk2ε2

...

yn = β0 + β1x1n + . . . βkxknεn

In matrix and vector form, we may write
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
y1

y2

...
yn

 =


1 x11 . . . xk1

1 x12 . . . xk2

...
1 x1n . . . xkn



β0

β1

...
βk

+


ε1
ε2
...
εn


⇒ y = Xβ + ε

which is similar to the equation in (10.1). Thus the overall estimating equations are similar to those shown
for simple linear regression model.

β̂ = (X′X)−1X′y

E(β̂) = β

V (β̂) = σ2(X′X)−1

ŷ = Xβ̂

e = y − ŷ

σ̂2 =

∑n
i=1 e

2
i

n− k
=

e′e

n− k
V̂ (β̂) = σ̂2(X′X)−1

Thus the test statistic to test the hypothesis

H0 : [β]i = 0 vs. H0 : [β]i 6= 0

is

t =
[β̂]i

sd([β̂]i)
=

[β̂]i√
[V̂ (β̂)]ii

∼ tn−k

where [β̂]i is the ith element of β̂ and [V̂ (β̂)]ii is the (i, i)th element of V̂ (β̂).

10.3.1 Data Analysis

Table 10.2: Price for size of residential flats and green rating
Flat Number Price (in million taka) Size (in thousand square foot) Rating (green rating)

1 12.5 2.5 0.95
2 7.5 1.5 0.65
3 11.0 2.4 0.75
4 8.5 2.0 0.70
5 11.5 2.2 0.80
6 12.0 2.5 0.85
7 6.5 1.2 0.5

R Codes:
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y = c(12.5, 7.5, 11.0, 8.5, 11.5, 12.0, 6.5) # for price

x1 =rep(1, times = length(y)) # for intercept term

x2 = c(2.5,1.5,2.4,2.0,2.2,2.5,1.2) # for size

x3 = c(0.95, 0.65, 0.75, 0.70, 0.80, 0.85, 0.50)

X = cbind(x1,x2,x3) # forms the X matrix

XX = t(X)%*%X # computes X’X

IXX = solve(XX) # produces inverse of matrix X’X

betavector = IXX%*%t(X)%*%y # estimates beta vector

betavector[1] # shows the first coefficient beta_0

betavector[2] # shows the second coefficient beta_1

betavector[3] # shows the second coefficient beta_2

resid = y - X%*%betavector # vecror of residuals

n = length(y) # number of observation

k = 2 # number of variables

sigma2 = sum(resid^2)/(n-k) # estimate of noise variance

VarBeta = sigma2*IXX

varbeta_0 = VarBeta[1,1] # variance of beta_0

varbeta_1 = VarBeta[2,2] # variance of beta_1

varbeta_2 = VarBeta[3,3] # variance of beta_2

tstat1 = betavector[2]/sqrt(VarBeta[2,2]) # t-statistic for testing H_0: beta_1 = 0

tstat2 = betavector[3]/sqrt(VarBeta[3,3]) # t-statistic for testing H_0: beta_2 = 0

# now compare this test statistic with critical value, hats off!!!

10.4 Exercises

1. For simple linear regression model verify whether following results are correct

(i) X′X =

[
n

∑
xi∑

xi
∑
x2
i

]
=

[
n nx̄
nx̄

∑
x2
i

]
, (X′X)−1 = 1

n
∑

x2
i−n2x̄2

[∑
x2
i −nx̄

−nx̄ n

]
= 1

nSSx

[∑
x2
i −nx̄

−nx̄ n

]
and X′y =

[ ∑
yi∑
xiyi

]
=

[
nȳ∑
xiyi

]
where SSx =

∑
x2
i − nx̄2

(ii) (X′X)−1X′y = 1
nSSx

[∑
x2
i −nx̄

−nx̄ n

] [
nȳ∑
xiyi

]
= 1

nSSx

[∑
x2
i (nȳ)− nx̄

∑
xiyi

−n2x̄ȳ + n
∑
xiyi

]
.

β̂ = 1
nSSx

[
nȳSSx + nx̄2nȳ − nx̄

∑
xiyi

nSPxy

]
= 1

nSSx

[
nȳSSx − nx̄SPxy

nSPxy

]
=

[
ȳ − SPxy

SSx
x̄

SPxy

SSx

]
=

[
β̂0

β̂1

]
2. For simple linear regression model derive test statistic for testing H0 : β1 = 0 against H1 : β1 6= 0.

3. Assume that your company’s profit in recent 5 years compared to that of year 2010 are 1.1, 1.4, 1.3,
1.6, 1.8. Fit a linear trend model and comment on the results. (Hints: put Y values y = c(1.1, 1.4,
1.3, 1.6, 1.8) and X values are time trend t = c(1,2,3,4,5) to fit a simple linear regression model).


