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Chapter 1

Generalized Linear Model

Linear regression model assumes that the conditional expectation of y is a linear
function X3 and equivalently the relationship is stated with an equation y =
X3 + € where € ~ N(0,0°I). Because of the continuous distribution of €, this
model is only suitable for continuous response variable y but not for binary or
count response variables. Generalised linear model has a fascinating property of
dealing with response varibles from different distributions. GLM consists of three
components:

1. A random component that specifies the conditional distribution of the re-
sponse variable, given the values of the explanatory variables in the model.
Distribution of response variables are widely adopted from exponential fam-
ily such as Binomial and Poisson distributions.

2. A systematic component that is a linear predictor and is essentially a linear
function of regressors n; = x! 3

3. A parametric link component that is a smooth and invertible linearizing
link function g(p;) = n; = x 3, which transforms the expectation of the
response variable, p; = E(y;), to the linear predictor 7;.
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1.1 Estimation of parameters from score equa-
tion

Let us assume that the response y; is an observation from a family of exponential
distributions. Thus the log-likelihood function for y; is

6i(0,v,y) = log f(ys, 0i,7) = i — b(6,)

@) + c(yi, ¥) (1.1)

and that for the sample y;,...,y, is

0.0, = Y- (W

=1

+c<yl-,¢>) , (1.2)

where £;(0,1,y) denotes the individual log-likelihood contribution for the ith ob-
servation.

Let us assume that the expectation of response is p; = E(y;) = h™(6;) and
g(u;) = m; is the link function that transforms the expectation of response to the
linear predictor 7; = x!' 3. Thus the log-likelihood for GLM estimation process
can be expressed as

B, =3 (LI ) (1.3

From (1.3) we may note that c¢(y;, 1) and a(¢) are independent of 6; and so these
are independent of parameters of our interest. To get estimating equations for the
regression parameters, we have to differentiate the log-likelihood with respect to
each coefficient in turn. Let ¢; represent the ¢th component of the log likelihood.
Then, by the chain rule,

08, o6 " o om 9B,

for 5 =0,1,...,k, which can be rewritten as

0l yi — i Ot
= X Xii
03, v(pi) Omi !

(1.4)
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where v(y;) = a()b"(6;). Summing the above (1.4) across all observation, we
may write the score equation

Zyz iy x% 0for j=0,1,....k (1.5)

which is known as the estimating equations for the generalised linear model and
the maximum likelihood estimates are obtained by solving the score equations.
A general method of solving score equations is the iterative algorithm based on
Fisher’s method of scoring derived from a Taylor’s expansion of s(3). In the rth
iteration , the new estimate S+ is obtained from the previous estimate 3
from the equation

BUH = B0 1 s(8 ) E(H(5")) 7, (1.6
where H is the Hessian matrix, a matrix of second derivatives of the log-likelihood.
The Hessian matrix is

gs1(B) ., 9s1(B) e . %
63 3Bp 6p16B1 6B198p
H(p) = : I : = : I :
5sp(B) . sp(B) 524 L 520
(561 5ﬁp 55;7551 6ﬁp5ﬁp

o0 no 0 n Yi— i 5#2 .

620 ol i (yi — m) O
0808k 0Bk i—1 % on; ’

1 0p ST )
- i v, ! Z.I'Z'T> + V- 1_11-”_ :— ;).
Z ~ )55 ( om ; gy i v )
Since i( o — _ Owibms b to that
0Bk Yi 'ul) - omi 0Bk 51 T We may note a
(52£ s 5/'L 2 n
E =-k . : isTir | = — iLisTir

where W = diag(wy,...,w,) is a diagonal matrix of weights. Thus A(5) =

E(H(B) =—-F <55i25£ﬁk> = XTWX and by Fisher scoring method

BT = g+ ATH(B)s(8T).
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It can be deduced from the above equation that

) =3 Z o 91
r T ng ) AT 7
6 w l‘zs Z Mz )5M(r)

7

and further that
P
A(ﬁ(r))ﬁ(r-{-l) _ Z w@(r)xu Z xisbgr+1) _ Z wi(r)xijni(r—l—l)
s=1

Thus we may write

Z Wy 70 Z W+

and in matrix form this is
XTw(T)XB(T-H) — XTWwWgz)
and it turns out that the updates can be written as
ﬁ(rJrl) (XTw(r X)flew(r)Z(r)

with similar kmd of 1terat1vely reweighted least s?uares of z; on X with weights
WO = diag(w,”) and 2 =0 + (y; — i) g’ (1").

Since A(BM)B*) = XTWXB"HD and A(B™)B" + 5(B")) = XTWZ),
the iterative algorithm for confidentialised estimates is

XT"WXBUH) = XTWZ") + e
and the iteration
Bt = (XTWX) ' XTWZ") 4+ (XTWX)'e? (1.7)

continues until a pre-selected level of accuracy in estimation, say for example,

(r+1) ~( ~(r+1) ~(r)
(5 -8" ) B -8
)T ~(r)
BB
is satisfied. An iteratively reweighted algorithm for parameter estimation can be
stated as:

) S 10710
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1. Start with the initial estimates p;, compute 7; = g(f1;), denote them by ﬂgo)
and ﬁi(o). Simple start option for initialisation could be /EEO) =y; + 0.5 (but
this can be different based on the data type and estimation complexity)

2. Calculate working responses

27 =0+ (g = m)g (")
and working weights
1

[ )] @)l

3. Calculate B+ by weighted least squares estimates
B(TH) — (XTW(T)X)_lXTW(’")z(’")

wf =

4. Repeat 2 and 3 until the regression coefficients stabilise, at which stage the
estimates converge to the maximum likelihood estimate of 3.

1.2 Estimation of Dispersion Parameter

The maximum-likelihood estimating equations for generalized linear models take
the common form
- Yi — M y dp;
— av(p)  dny

X.%'ij:OfOI'jIO,l,...,]{]

These equations are generally nonlinear and therefore have no general closed-
form solution, but they can be solved by iterated weighted least squares (IWLS).
The estimating equations for the coefficients do not involve the dispersion param-
eter, which (for models in which the dispersion is not fixed) then can be estimated

as )
1 Vi)
(b—n—k—l; a;v(fl;)

The estimated asymptotic covariance matrix of the coefficients is
V(b) = g(X"WX)™!
where b is the vector of estimated coefficients and W is a diagonal matrix of
weights from the last IWLS iteration.
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1.3 Asymptotic distribution of maximum likeli-
hood estimator
The estimates B have the usual properties of maximum likelihood estimators. In
particular, £ is asymptotically normal:
B~ N o(X"WX)™)

where ¢ is unknown and should be estimated in order to estimate the covariance
matrix Cov(3) = ¢(XTWX)~!. Given the results for W in the final iteration and
estimated dispersion parameter ¢ (as has been estimated in the previous section),

we may estimate the covariance matrix Cov(B) = ¢(XTW X)L,

1.4 Binary Response Model

Suppose that the response variable Y; is a 0-1 random variable (binary response
0 or 1), then the link function

9(ps) = logit(u;) = log (1 /ju)

and the variance function is
V(i) = pa(1 — pg).
L0

Since 7; = x! 3, we may note for 7; = g(u;) that p; = 3 Also, we may
e M1
deduce that ¢'(u;) = m(llfm) = V(lm). Thus the estimation process could be

continued with the initial set up:

i = (y; +0.5)/2
(0) (0) N(O)

(0) (0)

=m0+ (= )G () =, 0 | 0
V=)
0 _ 1 _ (0 (0)
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By employing this initialisation, we may estimate B by using the iterative
algorithm of solving the score function. Once the parameter 3, dispersion param-
eter ¢, and covariance matrix ¢(XTWX)~! are estimated it is straight forward

to compute €2 for some pre-selected el(Bpgy) vector. Finally, we estimate the
coefficients by solving perturbed score equation described in Section 3.

Remark 1. For a probit model, g(u;) = ®'(u;) and the variance function
V(pi) = pi(1 — p;) are used, where & stands for the CDF of N(0,1). So the
perturbation process described in this section can be easily extended to the probit
model.

1.5 Count Response Model

Assuming that the number of occurances of an event (say for example, number of
visits to see a doctor or number of medicare claims in a year) Y; follows Poisson
distribution with parameter u;, a Poisson model is fitted with a suitable link
function. The most commonly adopted link function for count response models is
log(p;). Thus for a GLM of Poisson distribution of counts, we consider the link

function g(u;) = log(p;), variance function V' (u;) = p;, and the linear predictor
W= o(u) = xTB. Since ¢m) = L, s = g (m) = B, and afy) = 1,
we may start with an initialisation with ,ugo) = (y; +0.5)/2, 772(0) = log (;é”),
zi(o) = m(o) + (yi — ul(-o)) / u@(o)’ and wl@ = ugo) to obtain B from an iteratively

reweighted algorithm described earlier.

1.6 Practical experimentation

For practical experimentation for binary and count response models we consider
two datasets: Heart and Estrogen/Progestin Study (HERS) data and US Na-
tional Medical Expenditure Survey (NMES) data. The HERS dataset is used to
demonstrate the proposed perturbation process for binary response models and
the NMES dataset is used to fit a count response model.
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1.6.1 Heart and Estrogen/Progestin Study Data

The HERS dataset comes from a clinical trial of hormone therapy for preven-
tion of recurrent heart attacks and deaths among 2,763 post-menopausal women
with existing coronary heart disease (7). ? used this dataset in their book to
fit a generalized linear model and the dataset can be downloaded from the web-
site http://www.epibiostat.ucsf.edu/biostat/vgsm/data.html. Preexisting
medical condition (medcond: yes or no) is a very sensitive personal informa-
tion and sometimes very important to assess the amount of rebate from private
health insurance. A binary response model can be fitted to predict whether the
individuals had a medical condition (medcond), given the information on other
variables: the age of the respondents (age), regular exercise (exercise: yes or
no), having diabetes (diabetes: yes or no), and drinking habit (drinkany:
yes or no). R commands to produce results presented in Table 1.2 are provided
in the following box.

/EERS <- read.csv("C:/Users/atikur/hersdata.csv", na.strings="") \\\
hers.data<- data.frame( HERS$age, HERS$raceth, HERS$nonwhite,
HERS$smoking, HERS$drinkany, HERS$exercise,
HERS$diabetes, HERS$statins, HERS$medcond )

colnames (hers.data)<- c("age", "raceth", "nonwhite", "smoking",
"drinkany", "exercise", "diabetes",
"statins", "medcond")

nrow(hers.data)

ncol (hers.data)

hers.clean<- na.omit(hers.data)

summary (glm(hers.clean$medcond ~ hers.clean$age + hers.clean$diabetes
+ hers.clean$exercise + hers.clean$drinkany,

\\\ family=binomial (1ink="logit")))$coef ///

1.6.2 US National Medical Expenditure Survey Data

This dataset comes from the US National Medical Expenditure Survey (NMES)
for 1987, and is available at http://www. jstatsoft.org/v16/i09/. There are
4,406 individuals in the dataset who are aged 66 and over, and are covered by
the public insurance program (Medicare). ? used this dataset to model the count



